Forecasting influenza in Hong Kong with Google search queries and statistical model fusion
نویسندگان
چکیده
BACKGROUND The objective of this study is to investigate predictive utility of online social media and web search queries, particularly, Google search data, to forecast new cases of influenza-like-illness (ILI) in general outpatient clinics (GOPC) in Hong Kong. To mitigate the impact of sensitivity to self-excitement (i.e., fickle media interest) and other artifacts of online social media data, in our approach we fuse multiple offline and online data sources. METHODS Four individual models: generalized linear model (GLM), least absolute shrinkage and selection operator (LASSO), autoregressive integrated moving average (ARIMA), and deep learning (DL) with Feedforward Neural Networks (FNN) are employed to forecast ILI-GOPC both one week and two weeks in advance. The covariates include Google search queries, meteorological data, and previously recorded offline ILI. To our knowledge, this is the first study that introduces deep learning methodology into surveillance of infectious diseases and investigates its predictive utility. Furthermore, to exploit the strength from each individual forecasting models, we use statistical model fusion, using Bayesian model averaging (BMA), which allows a systematic integration of multiple forecast scenarios. For each model, an adaptive approach is used to capture the recent relationship between ILI and covariates. RESULTS DL with FNN appears to deliver the most competitive predictive performance among the four considered individual models. Combing all four models in a comprehensive BMA framework allows to further improve such predictive evaluation metrics as root mean squared error (RMSE) and mean absolute predictive error (MAPE). Nevertheless, DL with FNN remains the preferred method for predicting locations of influenza peaks. CONCLUSIONS The proposed approach can be viewed a feasible alternative to forecast ILI in Hong Kong or other countries where ILI has no constant seasonal trend and influenza data resources are limited. The proposed methodology is easily tractable and computationally efficient.
منابع مشابه
SESOS: A Verifiable Searchable Outsourcing Scheme for Ordered Structured Data in Cloud Computing
While cloud computing is growing at a remarkable speed, privacy issues are far from being solved. One way to diminish privacy concerns is to store data on the cloud in encrypted form. However, encryption often hinders useful computation cloud services. A theoretical approach is to employ the so-called fully homomorphic encryption, yet the overhead is so high that it is not considered a viable s...
متن کاملContinuous RBM Based Deep Neural Network for Wind Speed Forecasting in Hong Kong
The wind speed forecasting in Hong Kong is more difficult than in other places in the same latitude for two reasons: the great affect from the urbanization of Hong Kong in the long term, and the very high wind speeds brought by the tropical cyclones. Therefore, prediction model with higher learning ability is in need for the wind speed forecast in Hong Kong. In this paper, we try to employ the ...
متن کاملDeploying Google Search by Voice in Cantonese
We describe our efforts in deploying Google search by voice for Cantonese, a southern Chinese dialect widely spoken in and around Hong Kong and Guangzhou. We collected audio data from local Cantonese speakers in Hong Kong and Guangzhou by using our DataHound smartphone application. This data was used to create appropriate acoustic models. Language models were trained on anonymized query logs fr...
متن کاملCharacterizing Influenza surveillance systems performance: application of a Bayesian hierarchical statistical model to Hong Kong surveillance data
BACKGROUND Infectious disease surveillance is a process the product of which reflects both actual disease trends and public awareness of the disease. Decisions made by patients, health care providers, and public health professionals about seeking and providing health care and about reporting cases to health authorities are all influenced by the information environment, which changes constantly....
متن کاملProspect of Electronic Road Pricing in Hong kong
To cope with the urban congestion problem resulted from rapid urbanization some cities are successfully using Electronic Road Pricing policy as a demand management measure. In 1982, Hong Kong Governmenttook initiative to experiment electronic road pricing in Hong Kong. Though, the project outcome reveals that Electronic Road Pricing could bring tremendous economic, social and environmental bene...
متن کامل